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Temporal accuracy analysis of phase change convection
simulations using the JFNK-SIMPLE algorithm
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T-3, Fluid Dynamics Group, Los Alamos National Laboratory, P.O. Box 1663, MS B216,
Los Alamos, NM 87544, U.S.A.

SUMMARY

The incompressible Navier–Stokes and energy conservation equations with phase change effects are
applied to two benchmark problems: (1) non-dimensional freezing with convection; and (2) pure gallium
melting. Using a Jacobian-free Newton–Krylov (JFNK) fully implicit solution method preconditioned
with the SIMPLE (Numerical Heat Transfer and Fluid Flow. Hemisphere: New York, 1980) algorithm
using centred discretization in space and three-level discretization in time converges with second-order
accuracy for these problems. In the case of non-dimensional freezing, the temporal accuracy is sensitive
to the choice of velocity attenuation parameter. By comparing to solutions with first-order backward
Euler discretization in time, it is shown that the second-order accuracy in time is required to resolve
the fine-scale convection structure during early gallium melting. Qualitative discrepancies develop over
time for both the first-order temporal discretized simulation using the JFNK-SIMPLE algorithm that
converges the nonlinearities and a SIMPLE-based algorithm that converges to a more common mass
balance condition. The discrepancies in the JFNK-SIMPLE simulations using only first-order rather than
second-order accurate temporal discretization for a given time step size appear to be offset in time.
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1. INTRODUCTION

Monitoring the phase front during metal castings is important for a complete understanding of the
strength and properties of the eventual solid material. Knowledge about convective behaviour in
the cooling liquid and its influence on the associated phase front progression over time can assist
with quality control. Unfortunately, replication via laboratory experiments is virtually impossible
to perform. Therefore, accurate simulations of time-dependent phase change convection and front
tracking are crucial.

The two-dimensional simulation of melting and solidification of pure metals with convection
provides a tractable framework to develop accurate models of phase transitions. Even with these
simplifications to the physical system, capturing realistic time-dependent phase change interfaces
within convective flow regimes is a challenge. Incorporating convection associated with temperature
gradients in the fluid adds a coupling of the momentum and temperature field. Latent heat release
and velocity attenuation at the phase front reduces the dynamical time step of the problem. Also,
monitoring the location of the phase front requires an accurate tracking method in space and time.

There has been recent focus on the spatial accuracy required for phase change convection simula-
tions. A high aspect ratio natural convection study has discounted lower order spatial discretization
methods for being overly diffusive for coarse grid recirculating flows [1]. A reference solution for
pure tin melting has been offered using a comprehensive assessment of spatial convergence [2].
A comprehensive look at a gallium melting problem showed visually that sufficiently fine grids
and second-order spatial differencing is required to resolve the proper number and location of
convective roll cells and the phase front position with time [3]. Of equal importance to adequate
spatial resolution is the accuracy of solutions as they progress over time, which has not yet been
assessed for phase change convection simulations.

The issue of time accuracy for nonlinear multiphysics problems has been investigated recently
in the framework of geophysical flows [4], two-phase flow coupled with heat conduction [5] and
radiation diffusion [6]. When multiple scales of physical behaviour are present in time-dependent
problems, the physics occurring at the dynamical times scale determines the time step size at which
the entire model problem can be solved accurately. In some cases, physical processes occurring at
relatively fast time scales have cancelling effects, and a method that can produce stable solutions
using larger time step sizes will maintain accuracy. A model of both convection and phase change
must either: (1) linearize the equations and take small enough time steps to limit nonlinear effects;
or (2) split off the phase change by solving for temperature implicitly separate from other forcings,
which are solved explicitly. In this way, the time step can be larger than the Courant–Friedrichs–
Lewy (CFL) stability limit of the problem. The CFL, or CFL number, specifies the upper stability
limit for time step sizes using explicit methods. As another option, (3) the entire equation set can
be solved implicitly to a specified nonlinear tolerance. Although (2), to which is referred as a semi-
implicit solution method, and (3) can both produce solutions using higher-order discretizations, it
has been demonstrated for a range of problems that additional time integration error terms exist
when equations are split and linearized [7].

It has been recently established that the Jacobian-free Newton–Krylov algorithm preconditioned
with SIMPLE (JFNK-SIMPLE) is an efficient solution method for two-dimensional phase change
convection simulations of a non-dimensional freezing material and pure gallium melting [8]. The
JFNK-SIMPLE algorithm solves the nonlinear equation set as in option (3) above. Compared to
SIMPLE as a stand-alone solver, JFNK-SIMPLE completed the simulations more quickly for the
same time step size and converged using larger time steps for both melting and freezing simulations.
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With this algorithm, significant computational expense has been removed and it is possible to expand
on the degree of complexity that has been previously been included in phase change convection
problems. However, the temporal accuracy of fully implicit algorithms, especially when compared
to the accuracy other more traditional solution methods, is not well understood.

Presently, a comprehensive look at temporal accuracy of phase change convection simulations
using the fully implicit JFNK-SIMPLE algorithm is performed using the examples of non-
dimensional solidification and pure gallium melting with significant convection structure at early
times. These simulations are compared to those using the more traditional SIMPLE algorithm. The
model equations and parameters used for the current study are described in Section 2. The nature
and convergence criteria of these algorithms are outlined in Section 3. The results and discussion
are presented in Section 4 with conclusions in Section 5.

2. MODEL EQUATIONS

The equations of motion governing the model are the time-dependent two-dimensional incom-
pressible Navier–Stokes equations with continuity and thermodynamics. The mathematical repre-
sentation of phase change is expressed with the enthalpy form of the energy equation including
latent heat terms. This allows a single-valued expression of the internal energy of the system and
is consistent with earlier work. The resulting equations in non-dimensional form are given by,

�u
�t

+ ∇·vu − 1

Re
Du + 1

�

�p
�x

− A(H)u = 0 (1)

�v

�t
+ ∇·vv − 1

Re
Dv + 1

�

�p
�y

− A(H)v = fv (2)

∇·v= 0 (3)

�H
�t

+ ∇·vH + cp
Re Pr

D�(H) = 0 (4)

where the dependent variables are the horizontal and vertical velocities v= {u, v}, pressure (p),
and total enthalpy (H ). These variables combine to make up the state vector x= {u, v, p, H}T to
be solved at each time step. The term �(H) in Equation (4) is the temperature function expressed
solely in terms of H defined below. The symbols D and ∇· represent the two-dimensional Laplacian
and divergence operators, respectively. Additional parameters that define the system are the density
�, latent heat L , specific heat cp, Prandtl number Pr, Reynolds number Re, and Rayleigh number
Ra. For this study, the temperature range is small, so cp and � are set constant between phases.
Equations (1)–(4) are discretized using second-order centred differencing in space. For time
discretization, two fully implicit options have been implemented: (1) first-order backward-Euler
(BE); and (2) second-order backward difference formula (BDF2), and are discussed in detail
in Section 3.3.

The velocity attenuation (commencement) as the material solidifies (liquifies) in the region of
the domain is treated with a forcing term in the momentum equation, A(H)v. Because we are
simulating pure material behaviour, a simple linear relationship to the solid fraction of the material
is used to damp the material velocity in the vicinity of the phase front, so A(H) = A′�s. The
constant A′ is based on the thermodynamic properties of the simulation and �s is the solid fraction
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of the material. The material in the domain is either solid (�s = 1), liquid (�s = 0), or within a
numerical mushy zone (0��s�1), the region where a portion of the latent heat has been released
or absorbed. The buoyancy force acting on the fluid arises from the Boussinesq approximation,
which is given by f(H) ={ fu = 0, fv = (Ra/Re2 Pr)�(H)}.

Presently, energy conservation is expressed in terms of total enthalpy

H = cpT + (1 − �s)L (5)

and accounts for energy changes associated with a change in temperature (T ) and phase. For a
pure material, the temperature can be extracted from H using

T = �(H) =

⎧⎪⎨
⎪⎩

H/cp if H<cpTm
Tm if cpTm�H�cpTm + L

(H − L)/cp if H>cpTm + L

where Tm is the melting temperature. The domain is defined spatially using a finite volume two-
dimensional Cartesian staggered fixed grid, whereby p and H lie at the cell centres and u and
v lie on the western and southern cell faces, respectively. The domain consists of a rectangular
cavity of equal-sized cells along each direction, �=[0 : bx , 0 : by] with boundary conditions of

u = v = 0 on �� (6)

H(0, y)= Hl, H(bx , y)= Hr, y ∈ [0, by] (7)

�H
�y

(x, 0) = �H
�x

(x, by) = 0, x ∈ [0, bx ] (8)

This corresponds to insulating top and bottom walls and left (Hl) and right (Hr) sidewalls with a
specified constant value. As mentioned, latent heat release associated with liquid to solid phase
change is tracked directly within the enthalpy framework. This model framework provides a direct
comparison with the majority of recent phase change models.

3. SOLUTION ALGORITHMS

In this analysis, two algorithms are employed to investigate algorithm accuracy, the SIMPLE
algorithm and the JFNK solver. These algorithms as applied to phase change convection problems
are outlined in a recent study of algorithm efficiency [8], and will therefore only be summarized
below. Both algorithms are employed for this study because they naturally lend themselves to the
convergence criteria to which they are being solved. The SIMPLE algorithm could be converged
to the same tighter tolerance as JFNK-SIMPLE, but used this way as it is much less robust along
the range of time step sizes used here. However, it is a common solution method for problems
with phase transition and provides a parallel comparison with earlier work.

3.1. SIMPLE algorithm

SIMPLE is a nested linear iterative process commonly used for coupled problems of momentum
and energy [9]. Linear stationary solution methods are applied for a set number of sweeps to
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generate approximate updates of each dependent variable, which are then used to correct for mass
balance through pressure and momentum corrections. In this application of SIMPLE, an update to
the enthalpy equation is generated using 20 sweeps of the successive over-relaxation method. The
frozen enthalpy update is then used in 10 sweeps to generate an update of u and v sequentially
using Gauss–Seidel. The momentum updates provide an input to generate �p using Equation (3)
which is fed back into the momentum equations to produce a velocity correction. This brings
the system towards mass balance. The ‘mass balance’ condition as a convergence criterion is set
to �p�1× 10−5 and �u and �v�1× 10−2 to be consistent with traditional SIMPLE convergence
characteristics [3, 10]. The SIMPLE update of pressure is damped by a factor � = 0.2 to account for
an overestimation of the velocity correction (refer to [9]). When applied as a preconditioner, the set
of sweeps through all the equations and the velocity corrections is repeated for a set of cycles, the
number of which depends on factors such as the spatial and temporal scales of the problem. When
used as the main solver, the convergence test was performed after each set of sweeps through the
individual line solves. As an alternative to the mass balance convergence criterion, the SIMPLE
algorithm could employ a full nonlinear norm reduction as the convergence criterion. However,
there is no tolerance test after a specified number of sweeps and limited coupling of the equations,
so the efficiency and robustness of the algorithm used in this way are limited [8]. For convergence
defined as a reduction of the nonlinear norm, we use the JFNK-SIMPLE algorithm presented
in Section 3.2.

3.2. JFNK preconditioned with SIMPLE

The JFNK algorithm is a nested iteration solution method consisting of an outer nonlinear loop,
inside which a linear solver calculates an approximate solution guess. To minimize the work of the
linear solver, a preconditioner based on the SIMPLE algorithm is employed. A general discussion
of JFNK is presented in a recent review article [11]. The details of JFNK-SIMPLE as applied here
are outlined in Evans et al. [8] and will only be summarized here. The outer loop solves the full
nonlinear equation set (1)–(4) in residual form

F(x) = 0 (9)

where F is the function of nonlinear residuals for each dependent variable in x. A solution is found
at the time advanced solution by minimizing F(x). A first-order Taylor series expansion of F(x)
in (9) gives

J(xk)�xk = − F(xk), xk+1 = xk + �xk (10)

where J is the Jacobian for F and k is the nonlinear iteration index. A specified drop of the L2
norm of the residual �nl defines nonlinear convergence

‖F(xk)‖2
‖F(xo)‖2<�nl (11)

which is set to �nl = 1× 10−8 for error calculations, and �nl = 1× 10−6 elsewhere.
The nonlinear Newton loop of JFNK receives a linear approximation to the nonlinear equation

set (9) from generalized minimum residual (GMRES), a Krylov method that utilizes least squares to
maximize the quality of the update for non-symmetric problems. Rather than forming the Jacobian
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directly, a finite-difference approximation of the Jacobian times a vector is formed

Jv� F(x + �v) − F(x)
�

(12)

where � is a small perturbation. The Jacobian-vector product is used to update the Krylov vector
in the linear iterative process until the linear update satisfies

‖J�xk + F(xk)‖2
‖F(xk)‖2 <�k (13)

The setting of �k , which is the linear tolerance parameter, varies depending on the type of problem
to be solved. For the time-dependent problems with some significant nonlinearity, a constant value
of �k = 1× 10−2 maximizes efficiency of the overall algorithm. The �x update in (13) is determined
from the most recent Krylov vector, and the vector grows with each linear loop. To minimize the
number of linear GMRES loops and the associated storage costs, �x is generated with the use of
a preconditioner.

Presently, the SIMPLE algorithm is used as a physics-based preconditioner to JFNK. The term
‘physics-based’ refers to the use of a simplified form of the original discretized nonlinear equation
set. Choosing appropriate simplifications maximizes the effect of the preconditioner to produce a
quality linear solution update within JFNK. The ‘right’ preconditioning option is implemented in
the left equation of (10) for a time step k as

J(M−1�z) =−F(x) (14)

where M−1 is the preconditioning operator expressed in matrix form and �z=M �x. Note that
M itself is never required, rather M−1 is called in two places within the algorithm in the process
of generating a linear update �x in the Krylov loop. First, a set of calls is performed to calculate
M−1�z which builds the Krylov vector. Once the Krylov vector meets the convergence criteria, a
single call is made to return �x for Equation (13). Although the preconditioner is displayed here
in matrix form, it is more precisely defined as an approximate inverse to the original equations.

The preconditionerM−1 is approximated through a prescribed number of sweeps of the SIMPLE
algorithm as described in Section 3.1. As a physics-based preconditioner to JFNK, SIMPLE is
applied with three simplifications to the phase change convection model equation set: (1) first-order
upwind spatial differencing is used to calculate advection and diffusion terms; (2) the amount of
latent heat released within a control volume changing phase is held constant during the construction
of M−1; and (3) first-order discretization in time is used. Because this analysis is restricted to
a pure material, step (2) is equivalent to holding control volumes to the current phase while in
the preconditioner portion of the algorithm. Note that the velocity attenuation is still applied to
the preconditioner algorithm, but no new attenuation due to phase change occurs. None of these
changes affect the accuracy of the solution, only the efficiency at which an linear update within
the specified tolerance for (13) is found.

3.3. Temporal discretization of variables

The discretization of the time derivatives is a key component of this temporal accuracy analysis.
The model equations (1)–(4) can be written such that / is any variable within the state vector x
and /s is the spatial discretization of /. Because these are coupled equations, /s encompasses
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more than one variable within x in some cases. The first-order accurate discretization in time used
here is the fully implicit BE method

/n+1 =/n + /n+1
s �t (15)

The superscript n + 1 is the new time level, n is the current time level, and �t denotes the time
step size, which is constant for this study. For fully implicit methods, the appropriate time step
size (within reason) is governed by accuracy rather than stability.

The second-order time discretization used here is BDF2 [12], which is a three-level fully implicit
scheme given by

/n+1 =/n + 1
3 (/

n − /n−1) + 2
3/

n+1
s �t (16)

for a constant time step size. BDF2 uses information from the n + 1, n, and n − 1 time levels,
which prevents oscillatory behaviour sometimes present with large time steps in centred difference
type temporal schemes such as Crank–Nicolson.

4. RESULTS

In order to compare algorithm accuracy directly with earlier modelling studies, we have selected
two benchmark problems of time-dependent convection with phase transitions. The equations
outlined in Section 2 are applied to a non-dimensional solidification problem in a square cavity
(Section 4.1), and a pure gallium melting problem (Section 4.2). The parameters of both problems
are presented in Table I. Recent work has computed solutions to the same problems to analyse
algorithm efficiency [8, 13].

The present study is focused on the accuracy of solutions to these problems given: (1) a con-
vergence criteria set for the nonlinear discretized equations for a given time step; (2) time step
size; and (3) the temporal discretization of the model equations. Spatial accuracy is vitally important

Table I. Parameters and domain configuration for non-dimensional solidification within a square cavity
(Problem 1) and gallium melting within a rectangular cavity (Problem 2).

Parameter Symbol Units (Prob 2) Problem 1 Problem 2

Domain width [0 : bx ] m [0 : 4] [0 : 0.0356]
Domain height [0 : by] m [0 : 4] [0 : 0.0635]
Rayleigh # Ra ND 3× 103 7.0× 105

Latent heat L J/kg 1.0 8.016× 104

Specific heat cp J/kg/K 1.0 381.5
Prandtl # Pr ND 1.0 0.0216
Reynolds # Re ND 1.0 3.37× 106

Density # � kg/m3 1.0 6.093× 103

Melt temperature Tm K 0.0 302.78
Right wall temperature Tr K 0.5 301.0
Left wall temperature Tl K −0.5 311.0
Velocity attenuation A′ s−1 1.56× 103 1.56× 109

‘ND’ refers to a non-dimensional value and the melt, left, and right wall temperature values are converted to
enthalpy when implemented.
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as well, but has been addressed in previous related numerical studies of spatial refinement [3, 14]
and discretization [1]. Wherever possible within the scope of this study, those findings have been
incorporated. When the convergence criterion is set to a ‘mass balance’ condition, the SIMPLE
algorithm (Section 3.1) is used. In this case, simulations converged to mass balance using the
SIMPLE algorithm are discretized to first order in time using BE explained in Section 3.3. When a
‘nonlinear’ convergence is specified, this refers to the convergence of the full discretized equations
(1)–(4) to a global L2 norm using the JFNK-SIMPLE algorithm (Section 3.2). The solutions found
using the nonlinear convergence criterion are either first- or second-order discretized, using (15)
or (16), respectively.

4.1. Non-dimensional solidification

The solidification of a fluid undergoing natural convection in a square cavity is simulated. This
problem is very similar to earlier benchmark problems [15–17]. At time= 0, the cavity contains
a fluid at rest at temperature T =+0.5, which is above the freezing point of Tm = 0.0. The left
and right walls of the domain are set constant at T =−0.5 and T = +0.5, respectively. Additional
parameters are given in Table I. The simulation is run to time= 100 to ensure sufficient solidification
on the left but minimize computational time, and the solution is presented in Figure 1. As expected,
the hot and cold walls induce an anticyclonic circulation whereby colder fluid is advected further
into the domain at the bottom. As a result, the phase front has two-dimensional structure as the
freezing progresses from left to right. To discern the temporal error, the simulations are performed
with varying time step sizes using three different accuracy criteria; nonlinear convergence with:
(1) first-order BE discretization; (2) second-order BDF2; and (3) convergence to mass balance
using BE. The temporal accuracy of these runs can be calculated quantitatively by determining
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Figure 1. Temperature contours for solution to a non-dimensional freezing problem with
parameters as given in Table I after 100 s on a 642 grid. The thick black line denotes the

phase front contour at T = 0.0 and red indicates warmer temperatures.
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Figure 2. L2 norm of error of enthalpy (H ) for non-dimensional solidification after 100 s on
a 322 compared to a base run using a time step size t = 1× 10−3. The number beside each
parameter label provides the slope of the temporal error line, which is the order of error.

the L2 norm of error of the enthalpy (H ) field from a reference solution. A reference solution
can be determined many ways; because there is no analytical solution from which to compare,
the reference solution used here is calculated from a relatively very small time step of 1× 10−3

using BDF2 and a nonlinear tolerance of �nl = 1× 10−8. These norms are plotted on a log–log
scale in Figure 2, and the slope of the line connecting the error of simulations performed with
the same temporal discretization provides the order of error. This provides a relative temporal
accuracy analysis. The first-order nonlinearly converged simulations are displayed with the solid
line with square markers and exhibit a robust first-order error (slope= 0.99). The same simulations
with second-order discretization are displayed as the solid starred line and demonstrate a robust
second-order error (slope= 1.995). Note that these runs range from a time step size of 0.02–2,
which is close to the CFL number for this problem. The fully implicit JFNK-SIMPLE algorithm
can converge with time step sizes that produce a CFL number above 1.0; however, the accuracy
of stepping over the time scale of the flow may be unacceptably high.

The dashed line with circle markers in Figure 2 indicates solutions converged to the mass
balance condition with BE discretization. Above a time step size of 0.2, the SIMPLE algorithm
could not converge to the mass balance criteria. Even though the equations are discretized using
first-order BE discretization, the error of the simulation was not first-order accurate over the range
of time steps of the study. At larger time steps, the error is below first-order accurate and qualitative
differences in the temperature contours from simulations used to produce Figure 2 are present.
Additional sweeps through SIMPLE for each time step reduce the error, but it is unable to match
the nonlinearly converged BE solutions generated using JFNK-SIMPLE for this simulation. For
example, at a time step size of 0.5, 50 sweeps of SIMPLE produces a converged solution, but with
an error of 0.083 versus 0.064 with JFNK-SIMPLE.

A time step convergence analysis similar to the one presented in Figure 2 was performed
for various values of the velocity parameter A′ in Equations (1) and (2) on a 322 grid. A base
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Figure 3. Convergence of the global norm of enthalpy (H ) for non-dimensional solidification
(after 100 s) for various velocity attenuation parameters (a)–(d) as outlined in the text. The

number beside each parameter label provides the slope of the error line.

run was created for a range of attenuation parameters: (a) A′ = 1.56× 102; (b) A′ = 1.56× 103;
(c) A′ = 1.56× 104; and (d) A′ = 1.56× 106, using the same convergence parameters as for the
analysis in Figure 2 for nonlinear convergence with BDF2 discretization. Then, corresponding runs
with larger time steps were performed and compared to the base run with the same value of A′. The
error for each parameter setting is plotted in Figure 3. Simulations with values (a)–(c) converge
with second-order accuracy over the range of time scales presented, but with different L2 norms
of error for a given time step. As the attenuation parameter is increased, the equations become
more stiff and convergence becomes more difficult. However, the more strongly damped velocities
produced with the higher attenuation parameter results in a slightly lower error because there is
less variation in the phase front location as the time step is increased. For the simulations where
the parameter is set to (c) and (d), the number of sweeps through the preconditioner is increased
from 5 to 10 to achieve consistent convergence, which retards efficiency. Referring to Figure 3,
convergence above a time step size of 1.0 for (d) is not possible even with these alterations. Further,
the robust second-order accuracy achieved with the smaller attenuation values is no longer present.

For this non-dimensional freezing problem, the error associated with different settings of the
velocity attenuation term (represented by the difference between the lines in Figure 3) is a con-
ceptually different kind of error than the temporal error investigated here and is beyond the scope
of the study (see [17, 18] for more discussion). The salient point to gain from Figure 3 is that
different choices of the velocity attenuation parameter affect how well the JFNK-SIMPLE algo-
rithm produces robust second-order nonlinearly converged solutions. The goal is to choose the
velocity damping term that fully extinguishes the velocities in the solid region but still provides
robust convergence criteria. Obviously, for simulations of actual materials, the attenuation term
that most closely matches the material properties and observed solidification behaviour is desired.
The solutions from the simulations used to generate Figure 3 are presented in Figure 4. Figure 4
is analogous to Figure 1, but focused on the left fifth portion of the domain with the freezing front
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Figure 4. Temperature contours for the solution to a non-dimensional freezing
problem after 100 s on a 642 grid, matching Figure 1 except only the left fifth of
the domain is shown for emphasis. The thick black line denotes the phase front
contour at T = 0.0. Various velocity attenuation parameters: (a) A′ = 1.56× 102;

(b) A′ = 1.56× 103; (c) A′ = 1.56× 104; and (d) A′ = 1.56× 106 are used.

to show detail. When A′ is set to (a), the velocity is not damped sufficiently because the frozen
material is still being advected. For (b), the material is basically stationary in the frozen region.
With (c) and (d) settings, the velocity is still extinguished at the front as desired, but converging
the JFNK-SIMPLE algorithm to the same criteria requires more effort by the algorithm for the
equations are more stiff. Nonetheless, the JFNK-SIMPLE algorithm can still converge the solution
very close to second-order accuracy.

4.2. Gallium melting

The model described in Section 2 is also used to find solutions for the early melting of gallium.
Gallium is considered a benchmark problem for numerical analyses; very limited experimental
data are available [19] and a body of previous modelling studies have been performed from
which to compare (e.g. [3, 10, 16]). The parameters used for the gallium melting simulation match
actual gallium properties as much as possible given the simplifications of the model, and are
presented in Table I. The present domain is matched to the left two-fifths of the domain used in
Hannoun et al. [3], because the current focus is on early melting. The material is initially solid at

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:637–653
DOI: 10.1002/fld



648 K. J. EVANS AND D. A. KNOLL

t=20sec

20 40 60

50

100

150

200

250

300

350

400
t=40sec

20 40 60

50

100

150

200

250

300

350

400
t=60sec

20 40 60

50

100

150

200

250

300

350

400
t=80sec

20 40 60

50

100

150

200

250

300

350

400

Figure 5. Melting and convection of pure gallium in a 160× 400 grid every 20 s with
time step of 0.02 s and parameters as in Table I. For clarity, only the left quarter of the
domain is displayed. Contours are values of streamfunction and the red line denotes

the frozen contour of temperature (T = 302.77 K).

301◦C, and at time= 0 the left wall of the domain is set at 311◦C, which is considerably above the
melting temperature of 302.77◦C. At subsequent times, the left edge of material in the domain has
melted and is flowing. These simulations have been performed on a 160× 400 point grid for 80 s
using JFNK-SIMPLE with a nonlinear convergence criteria and second-order BDF2 discretization
in time. The resulting streamfunction contours are displayed every 20 s in Figure 5. During this
simulation, the aspect ratio of the melted region of the left edge of the domain is high, so shear
instabilities and multiple convection cells develop. Where possible to compare, these plots closely
match the plots produced in a spatial convergence study by Hannoun et al. [3]. Our reduced domain
size results in a slightly stronger temperature gradient through the solid portion because right edge
cold temperature is closer to the melted region.

Hannoun et al. [3] determined visually that 240× 600 grid spacing (interpolated) was the
coarsest grid with adequate spatial resolution. However, the 160× 400 and 80× 200 grids used
for the analyses presented below produced results quite close to the finer grid results presented
in [3] when run with a time step converged solution method and using second-order discretization
in time. The implications of these differences are discussed below. It is desirable to perform all the
temporal accuracy analyses using very fine grids to quantify the error in space and time together.
For this analysis, the focus is on temporal error independent from spatial error, so the finest grid that
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Figure 6. L2 norm of error of enthalpy (H ) for gallium melting after 1 s on a 80× 200 grid
compared to a base run using a time step size t = 1× 10−5 and as specified in the text. The

labels have the same meaning as in Figure 2.

can perform baseline simulations in a reasonable amount of time is used. For general simulations,
where base runs at small time step sizes below the required level for accuracy are not required (as
explained below), finer grids are tractable such as in Figure 5.

From Figure 5, it is clear that the cellular-shaped convection is altering the shape of the phase
front over time. Just as with spatial accuracy, insufficient resolution of the time evolution of
the front may result in qualitative discrepancies in the final solution. To evaluate this effect,
a time step convergence study of the gallium melting simulation is performed, analogous to
Figure 2 for non-dimensional solidification, to discern the temporal discretization error. The
reference solution is calculated using a time step of �t = 1× 10−5 using BDF2 and a nonlinear
tolerance of �nl = 1× 10−8. As with the analysis above, the temporal accuracy of these runs is
determined quantitatively by determining the L2 norm of error of each simulation from the refer-
ence solution. Figure 6 displays the error for JFNK-SIMPLE with BE and BDF2 discretizations
and SIMPLE algorithms as described above. These error analyses are performed on a 80× 200
grid, however, they were also performed on 40× 100 grid (not shown) to test robustness, and the
results were consistent. For a range of time step sizes, the JFNK-SIMPLE algorithm captures the
model equations with first- and second-order accuracy using BE and BDF2 discretization, respec-
tively. At a time step of 0.002 s, which lies at the points at the right end of the figure, using BDF2
produces almost as much error as using BE. However, by halving the time step to 0.001 s, BDF2
is as accurate as using BE with a time step size that is an order of magnitude smaller. This results
in a more efficient algorithm for a given level of accuracy. For example, if the simulation requires
that the temporal accuracy be less than about 3× 10−3 (which is shown below to be required for
this gallium melting problem), then using BDF2 completes the simulation 6.3 times faster. When
the same simulation is completed with SIMPLE converged to a mass balance condition, it does
not converge above a time step size of 1× 10−3 s. It is not time step converged for time step sizes
above 5× 10−4 s, and the relative error is still above JFNK-SIMPLE run with a time step size 20
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Figure 7. Maximum vorticity within a cavity for a set of simulations of melted pure gallium
on a 80× 200 grid domain every 4 s. Results at 12–48 s are displayed.

times larger. Although the less restrictive mass balance convergence criteria produces a solution at
a given time step more quickly, it is demonstrated below that the loss in accuracy is qualitatively
significant.

To illustrate the effects on accuracy by using: (1) large time step sizes; (2) first-order discretiza-
tion in time; and (3) a mass balance convergence condition using the SIMPLE solver versus more
rigorous algorithm constraints, the maximum vorticity in the cavity over time is tracked. The
vorticity maximum corresponds to the value of vorticity at the centre of the strongest circulation
cell in the melted region. Figure 7 displays the maximum vorticity in the cavity for a range of
simulations every 4 s from 12 to 48 s. These simulations are compared to a second-order BDF2
nonlinearly converged (JFNK-SIMPLE) solution with a time step of 2.5× 10−4 s as a time con-
verged benchmark [simulation (1)]. The other simulations include a time step size of 1× 10−3 s,
nonlinearly converged using (2) BDF2 and (3) BE, and (4) BE with a mass balance convergence
criterion. As an illustration of the stability of fully implicit JFNK-SIMPLE, simulations with a
time step of 0.05s using BDF2 (5) and BE (5a—not shown) are performed as well. For consistency
with Figure 6, these are also presented on a 80× 200 grid. At early times, the maximum vorticity
of each varies little. However, by about 32s, the mass balance solution (4) in particular is diverging
from the benchmark (1) maximum vorticity value as the simulation progresses.

Up until about 40s, the nonlinearly converged simulations predict very similar maximum vorticity
values. At 40 s, however, there are significant differences between simulation (5) from (1)–(3),
which match very closely. At 44 s, a significant divergence in the maximum vorticity occurs with
simulation (3), which is then virtually eliminated by 48 s. To investigate this discrepancy in more
detail, streamfunction contours of the solution at 44 s (Figure 8) and 48 s (Figure 9) are displayed
for simulations (1)–(5). Note that only the left quarter of the domain is displayed and expanded
in the x direction to enhance detail. Figure 8 shows that at 44 s, the simulations produce flow
patterns with some qualitative differences from the time converged benchmark (1). Simulation (2)
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Figure 8. Stream function contours for gallium melting solution at 44 s on an 80× 200 grid
for simulations (1)–(5) as described in the text.
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Figure 9. Stream function contours for gallium melting solution at 48 s on an 80× 200 grid
for simulations (1)–(5) as described in the text.
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has the lowest temporal error (refer to Figure 6) and produces a solution correspondingly close
to (1). Simulation (5), which is second-order accurate but uses a large time step size, is also very
close. The mass balance converged run (4) is qualitatively different; it has not completely merged
two distinct cells present in all the simulations at 40 s (not shown).

As implied in Figure 7, simulation (3) is qualitatively different from the other simulations at 44s.
Figures 8 and 9 provide some insight. It is clear that between 44 and 48 s, two major cells merge
into one cell as melting progresses. This merging process has been seen in other melting scenarios
as the phase front widens the melt region over time [3, 14]. At 48 s, the circulation cells more
closely match the cell pattern seen at 44 s with simulation (3). It appears that the BE nonlinearly
converged case is not so much qualitatively different in space but instead has mistimed the roll
merging. By 48s, Figure 9 shows that for all but the mass balanced converged simulation (4), there
is one large cell flanked by three smaller circulation cells. This appears to be a temporal rather than
spatial discrepancy. Conversely, the mass balance converged simulation (4) continues to produce
a solution with the wrong number of distinct circulation cells at 48 s for this grid resolution. The
larger time step simulation (5) has discrepancies in terms of circulation strength, but the solution
is not as qualitatively different as with (4).

Fully implicit nonlinearly converged methods allow larger time steps to be used for simulations
as compared to semi-implicit methods (SIMPLE) or explicit methods, but it is only one algorithmic
component. Even with a nonlinear convergence criterion, the JFNK-SIMPLE simulation with first-
order discretization (3) cannot produce an accurate result for early gallium melting. With a time
step size 50 times larger than the time converged solution, simulation (5) produces a solution with
deficiencies. However, the gross circulation features are maintained, which makes the larger time
step sizes ideal for probing algorithm characteristics. For accuracy considerations of this problem,
a time step converged time step size (≈1× 10−3 s), higher order time discretization such as BDF2,
and a solution method that converges the nonlinearities of the discrete model are all required to
get an accurate solution for early gallium melting.

5. CONCLUSIONS

For phase transition with convection, a number of numerical issues that impact simulation accuracy
have been probed. The convergence criterion of the algorithm, the treatment of the velocity atten-
uation in the phase transition region in the model equations, the order of temporal discretization,
and the time step size all influence the ability of the algorithm to be able to match a simulation
benchmark. A careful consideration of the velocity attenuation parameter is needed to match the
solidification of the material being modelled and minimize the stiffness of the discrete equations.
Note that the velocity attenuation parameter setting is less sensitive in the melting case than solidi-
fication, likely because the velocity acceleration from zero has less impact on the front location. For
the gallium melting problem, temporal accuracy is a crucial component for a qualitatively correct
solution. The JFNK-SIMPLE algorithm that converges the nonlinearities with BDF2 discretization
demonstrates second-order temporal accuracy. Compared to first-order BE discretization and the
SIMPLE algorithm converged to a traditional mass balance condition at a time step converged
time step size, it is a superior algorithm.

JFNK-SIMPLE provides the efficiency and accuracy required to proceed forward with more
realistic configurations and forcings. Several future directions with this algorithm include adding
a concentration equation and mushy zone to be able to simulate the phase change convection
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behaviour of alloys and saltwater sea–ice applications within a fully implicit time converged
framework. Temporal accuracy in these cases is needed to capture anisotropies in the concentration
of solute and solid material during phase transition, leading to possible macrosegregation and
regional ocean circulation transients, respectively. In this case, thermal and solutal buoyancy
will provide the forcing for convection and interface structure. Basic double diffusive convection
problems and problems with a more complex frontal boundary require the fidelity of the second-
order JFNK-SIMPLE algorithm employed here.
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